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This article evaluates several strategies for storing checkpoint data in an opportunistic grid environment, including 
replication, parity information, and erasure coding. This evaluation compares the computational overhead, storage 
overhead, and degree of fault tolerance of these strategies. 

Executing computationally intensive parallel applications on dynamic heterogeneous environments such 
as computational grids can be a daunting task,1-3 especially when using nondedicated resources. Such is 
the case for opportunistic computing,4 where we use only the shared machines’ idle periods. In such a 
scenario, machines often fail and frequently change their state from idle to occupied, compromising their 
execution of applications. Unlike dedicated resources, whose mean time between failures is typically 
weeks or even months, nondedicated resources can become unavailable several times during a single 
day. In fact, some machines are unavailable more than they’re available. Fault tolerance mechanisms, 
such as checkpoint-based rollback recovery,5 can help guarantee that applications execute properly amid 
frequent failures. 

The fault tolerance mechanism must save generated checkpoints on a stable storage medium. The usual 
solution is to install checkpoint servers and connect them to the nodes through a high-speed network. 
But a dedicated server can easily become a bottleneck as grid size increases. Moreover, when using an 
opportunistic computing environment, relying on such dedicated hardware increases hardware costs and 
contradicts the objective of such a system, which is to use the idle time of shared machines. The simplest 
solution is to use the grid’s shared nodes as the storage medium for checkpoints, thus storing and 
retrieving data in the nodes’ shared disk space. But, to preserve the machine’s quality of service, it’s best 
to store and retrieve data from machines only when they are idle. Consequently, it’s likely that data 
stored on a machine will be unavailable when requested to restart a failed application. 

One way to solve this problem is to store multiple replicas of checkpoint data, so that you can recover the 
stored data even when part of the data repositories are unavailable. Another approach is to break data 
into several fragments, adding some redundancy, to enable data recovery from a subset of the 
fragments. Two common techniques for splitting data into redundant fragments are the use of erasure 
coding, such as information dispersal algorithms,6 and the addition of parity information. 

In this article, which builds on previously published work,7 we evaluate several strategies for the 
distributed storage of checkpoint data in opportunistic environments. (The “Related Work” sidebar 
discusses other recent work in this area.) We focus on the storage of checkpoint data inside a single 
cluster. We present a prototype implementation of a distributed checkpoint repository over InteGrade,8 a 
multiuniversity grid middleware project to leverage the computing power of idle shared workstations. 
Using this prototype, we performed several experiments to determine the trade-offs in these strategies 
between computational overhead, storage overhead, and degree of fault tolerance. 
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Data storage strategies 

A data-coding strategy must consider scalability, computational cost, and fault tolerance. We analyze 
three different strategies for data coding: data replication, data parity, and erasure coding in an 
information dispersal algorithm. We briefly compare their computational cost, storage overhead, and 
effects on data availability. 

To evaluate data availability, we must determine which machines will store checkpoint data. It’s possible 
to distribute the data over the nodes executing the application, other grid nodes, or both. Here, we 
evaluate checkpoint data storage in the machines where the parallel application executes, using an extra 
node when the coding strategy requires one. We use this approach because a parallel application 
normally tries to use most of the available nodes in a cluster to execute its processes. This approach also 
lets us couple application failures with data repositories failures, making it easier to control checkpoint 
data availability at any time. 

In this work, we don’t address data integrity or privacy. It’s possible to check data integrity using secure 
hash functions such as MD5 and SHA-1. Encrypting the checkpoints ensures data privacy. Data 
encryption is a computationally intensive process and should be used only when necessary. 

Data replication 

Using data replication, we store full replicas of the generated checkpoints. If one of the replicas becomes 
inaccessible, we can use another. The advantage is that no extra coding is necessary, but the 
disadvantage is that we must transfer and store large amounts of data. For example, guaranteeing safety 
against a single failure requires saving two copies of the checkpoint. 

In our scenario, transferring two times the checkpoint data would generate too much network traffic, so 
we store a copy of the checkpoint locally and another remotely. Even though a failure in a machine 
running the application will make one of the checkpoints inaccessible, it will be possible to retrieve the 
other copy. Moreover, the other application processes can use their local checkpoint copies. 
Consequently, this storage mode provides recovery as long as one of the two nodes containing a 
checkpoint replica is available. 

Parity 

An alternative to data replication is to slice the checkpoint data into several fragments and store these 
fragments with an additional fragment containing parity information. This avoids data replication’s large 
storage requirements because it requires the storage of only one checkpoint copy. 

We use a scheme in which each node calculates its checkpoint’s parity locally, first dividing the 
generated checkpoint into m slices and then calculating the parity over these slices. We divide a 
checkpoint vector, U, of size n into m slices of size n/m, given by 

U = U0,U1 , …, Um, and 

Uk = u0
k, u1

k, …, uk
n/m, 0  ≤ k < m 

where k is the slice number, and ui
k represents the elements of slice Uk. We calculate elements pi, 0 ≤ i< 

n/m of parity information vector P as 

pi = ui
0  ui

1 …  ui
m, 0 ≤  i < n/m 

IEEE Distributed Systems Online (vol. 7, no. 9), art. no. 0609-o9001 2



www.manaraa.com

where  represents the exclusive-or (XOR) operation. From each process, the system then distributes 
slices Ui and parity vector P for storage on other nodes. Similarly, we can recover a missing fragment by 
performing the XOR operation over the recovered fragments. 

Evaluating parity is fast because it requires only simple XOR operations and storage overhead is very 
small. The drawback is that the parity strategy doesn’t tolerate two or more simultaneous failures. 

Information dispersal algorithm 

Michael Rabin’s classic information dispersal algorithm (IDA) generates a space-optimal coding of data.6 
It allows coding a vector U of size n into m + k encoded vectors of size n/m, such that regenerating U is 
possible using only m encoded vectors. This encoding lets you achieve different fault tolerance levels by 
merely tuning the values of m and k. In practice, it’s possible to tolerate k failures with an overhead of 
only k/(mn) elements. 

This algorithm requires the computation of mathematical operations over a Galois field GF(q), a finite 
field of q elements, where q is either prime or a power px of prime number p. When using q = px, you 
carry arithmetic operations over the field by representing the numbers as polynomials of degree x and 
coefficients in [0, p – 1]. You calculate sums with XOR operations, whereas you carry out multiplications 
by multiplying the polynomials modulo an irreducible polynomial of degree x. In our case, we use p = 2 
and x = 8, representing a byte. To speed up calculations, we perform simple table lookup for the 
multiplications. 

The algorithm also requires the generation of m + k linearly independent vectors ai of size m. We can 
easily generate these vectors by choosing n distinct values ai, 0 ≤ i < n, and setting αi = (i, ai, … ai

n–1), 0 ≤ 
i< n. We then organize these vectors as a matrix, G, defined as 

G = [αT
0, αT

1, … αT
m+k] 

where T indicates the transpose of vector α. We now break file F into n/m information words, Ui, of size 
m and generate n/m code words V of size m + k, where 

Vi = Ui × G 

The m + k encoded vectors, Ei, 0 ≤  i < m + k, are given by 

Ei = V0[i], V1[i], … Vn/m[i] 

To recover the original information words, Ui, we need to recover k of the encoded m + k slices. We then 
construct code words Vj′, which are equivalent to the original code words Vi but contain only the 
components of the k recovered slices. Similarly, we construct matrix G′, containing only elements relative 
to the recovered slices. We now recover Ui, multiplying encoded words Vj′ by the inverse of G′: 

Ui = Vj′ × (G′)–1

The main drawback of this approach is that coding requires O[(m + k)nm] steps and decoding requires 
O(nm2) steps, in addition to the inversion of an m × m matrix. Qutaibah Malluhi and William Johnston 
proposed an algorithm that improves coding computation complexity to O(nmk) and also improves 
decoding.9 They showed that you can diagonalize the first m columns of G and still have a valid 
algorithm. Consequently, the first m fields of code words Vi involve simple data copying. Coding is 
necessary only for the last k fields. This approach reduces encoding complexity considerably. 
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IDA’s greatest advantage is that it provides the desired degree of fault tolerance with optimal space 
overhead. For an application composed of 10 nodes, if we set m as 10, the algorithm can tolerate a 
failure of one node with a 10 percent space overhead, two failures with a 20 percent overhead, and so 
on. The disadvantage of this approach is the computational complexity of implementing the algorithm and 
the higher computational overhead. 

Case study: InteGrade 

InteGrade is a grid middleware solution for harnessing idle computing power from shared workstations.7 
It consists of a collection of hierarchically organized InteGrade clusters. Here, we focus on checkpoint 
storage inside a single cluster. 

Architecture 

Figure 1 shows an InteGrade cluster’s main modules. The global resource manager (GRM) controls 
resource management at the cluster level; the local resource manager (LRM) controls it at the node level. 
To form a grid composed of a cluster federation, GRMs from different clusters communicate with one 
another to allow global sharing of local resources. An LRM communicates only with modules from its own 
cluster. This separates resources belonging to different clusters; consequently, administrators can apply 
custom policies for each cluster. 

 

Figure 1. InteGrade’s intracluster architecture. 
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InteGrade provides portable application-level checkpointing and rollback recovery for sequential 
applications and for BSP (bulk synchronous parallel) and parameter-sweeping parallel applications.10 
The main modules for storing checkpoint data are the checkpointing library, the execution manager (EM), 
the cluster data repository manager (CDRM), and the autonomous data repositories (ADRs). 

The checkpointing library provides the functionality to periodically generate portable checkpoints 
containing the application state. The EM maintains a list of applications executing on the cluster and 
coordinates the reinitialization process when an application fails. The CDRM manages the available 
ADRs from its cluster and the location of checkpoint data fragments. The ADRs store checkpoint data; 
they reside on machines that share their resources with the grid. 

When the checkpointing library needs to store checkpoint data, it queries the local CDRM for available 
local data repositories and then transfers the data to the returned repositories. Checkpoint data recovery 
involves the library querying the CDRM for the list of repositories containing the checkpoints and 
retrieving the checkpoints from these repositories. 

The benefits of using a centralized GRM, EM, and CDRM for each cluster include implementation ease 
and simpler algorithms requiring less message exchanges. Moreover, these modules are part of a cluster 
federation, thus allowing replication and logging of their contents in other clusters for increased fault 
tolerance. 

Experiments 

We performed the experiments using 11 AthlonXP 1700+ processors with 1 Gbyte of RAM, connected by 
a switched 100-Mbps Fast Ethernet network. Students use the machines during the day, so we 
performed the experiments at night. Our objective was to measure the overhead of checkpoint storage 
during normal operation without machines becoming unavailable. We configured all machines as part of 
a single InteGrade cluster. 

We used a matrix multiplication application with matrices of different sizes and composed of 12-byte 
double-precision elements. We evaluated the time necessary to encode and decode data and the 
overhead of using different storage strategies. 

Data encoding and decoding 

We first measured the time required to encode and decode a checkpoint using IDA and local parity. We 
varied the data size and the number of slices for the comparison. Figure 2 shows the results. In the 
graphs, IDA (m, k) represents IDA using m and k as described earlier. 

 
 
Figure 2. Time required  to (a) code and (b) decode a file. 
IEEE Distributed Systems Online (vol. 7, no. 9), art. no. 0609-o9001 5



www.manaraa.com

As expected, the local parity calculation was faster than IDA in all scenarios. The most interesting result, 
however, was that coding with IDA wasn’t too expensive. Encoding 100 Mbytes of data required only a 
few seconds; the encoding time increased linearly with the number of extra slices k and the data size. 
The same was true for decoding. Therefore, recovering the data shouldn’t take more than a few seconds. 
With further optimizations in vector multiplications, we can achieve even better results. Consequently, the 
results of this experiment were very satisfactory. 

Execution overhead 

We also evaluated the overhead incurred by checkpointing, coding, and distributing storage over a 
parallel-application execution time. The objective was to compare the overhead for several of the storage 
strategies we described earlier. We evaluated the following scenarios: 

• No storage. The system generates checkpoints but doesn’t store them. 
• Centralized repository. The system stores checkpoints in a centralized repository. 
• Replication. The system stores one copy of the checkpoint locally and another in a remote 

repository. 
• Parity over local checkpoints. The system breaks the checkpoint into 10 slices, with one 

containing parity information, and stores them in distributed repositories. 
• IDA (m = 9, k = 1). The system codes the checkpoint into 10 slices, from which nine are sufficient 

for recovery, and stores them in distributed repositories. 
• IDA (m = 8, k = 2). The system codes the checkpoint into 10 slices, from which eight are sufficient 

for recovery, and stores them in distributed repositories. 

When using replication, the system distributes remotely stored checkpoints throughout the nine nodes 
executing the application. For the last three scenarios, which generate 10 slices, we used an additional 
node to store the remaining slice. We stored the checkpoints in the machines executing the application 
processes so that we could evaluate how checkpoint storage affects application execution time. If other 
machines in the cluster are idle, it would be better to store data on these machines, thus transferring the 
storage overhead to them. 

Figure 3 compares the overhead of storing checkpoints to the overhead when the application generates 
but doesn’t store checkpoints. The x-axis contains the six storage scenarios. The y-axis shows the 
normalized execution time. We used nine nodes to perform the matrix multiplication and three matrix 
sizes: 1,350 × 1,350; 2,700 × 2,700; and 5,400 × 5,400. To perform the benchmark, we divided the total 
execution time into execution segments bounded by the checkpoint generation times. Table 1 gives 
these values for each matrix, along with the number of generated checkpoints and the size of local and 
global checkpoints. 
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Figure 3. Checkpoint storage overhead for the matrix multiplication application: (a) 1,350 × 1,350 
matrix, (b) 2,700 × 2,700 matrix, and (c) 5,400 × 5,400 matrix. 

 

Table 1. Execution parameters for the execution overhead experiment. 

Matrix size Total 
execution 
time (s) 

Segment mean 
execution time 
(s) 

No. of 
generated 
checkpoints 

Size of local 
checkpoints 
(Mbytes) 

Size of global 
checkpoints 
(Mbytes) 

1,350 × 1,350    908.5   54.8 17     7.3      65.6 

2,700 × 2,700 2,117.0 303.1 7   29.2    262.4 

5,400 × 5,400 4,281.6 616.1 7 116.6 1,047.7 

The results show that IDA incurs the highest overhead—which we expected, because IDA requires data 
encoding. But the extra overhead was always below 3 percent, which is very small, especially 
considering the large checkpoint sizes. Although for the 5,400 × 5,400 matrices the checkpoint interval 
was 10 minutes, we could reduce this value to 5 minutes or less and still get a reasonable overhead. 

In comparing these storage strategies, we saw that using parity, replication, or centralized storage could 
reduce overhead, but with a lower degree of fault tolerance. Encoding with IDA was slower but more 
flexible, because by manipulating its parameters we could trade off between speed, resource use, and 
level of fault tolerance. Moreover, IDA requires less storage space and network use, thus allowing better 
resource utilization. Finally, in our experimental scenario, the execution overhead of producing, coding, 
and storing global checkpoints greater than 1 Gbyte was small, always below 3 percent, for typical 
checkpoint intervals of a few minutes. 
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Storing all checkpoint data inside a single cluster is efficient because machines are normally connected 
by fast switched networks. But this approach has the drawback of being sensitive to correlated failures in 
the cluster nodes. A scenario in which all machines in a cluster become unreachable is quite common 
and can occur, for example, from a problem in the local network. 

Because we’re dealing with a federation of clusters, we can make the system tolerant to correlated 
failures by distributing the checkpoint fragments randomly throughout the grid. IDA seems to be a good 
choice for encoding data because it lets us code a file into an arbitrary number of fragments and requires 
only of a subset of them to recover the original file. For example, we could encode a file into 32 blocks, 
from which 16 are required for recovery, to achieve very high availability levels.11,12

The main problem with using remote clusters for storage is that sending and fetching data from distant 
repositories is typically far slower than operating in the local cluster. A good solution is to store most of 
the generated checkpoints in the local cluster and the remaining ones in remote repositories. For 
example, for each five generated checkpoints, the system would store four in the local cluster and one in 
remote clusters. This solution would prevent the large overhead of sending data through long distances, 
at the cost of possibly greater computation loss if there are correlated failures in the cluster nodes. 

However, coordinating data distribution in the entire grid is complex, requiring the clusters to 
communicate with one another and share information about their available data repositories and locally 
stored files. Several challenges remain for efficient distributed storage, including the development of 
scalable algorithms for data location, data consistency, data privacy, and fault tolerance. 

We are working on a distributed storage system for computational grids that allows reliable storage of 
arbitrary data. In this scheme, CDRMs from InteGrade clusters communicate with one another using a 
structured peer-to-peer overlay network. The system encodes data using IDA and then distributes the 
fragments throughout the grid. Each fragment receives a unique ID, which the system uses to route the 
fragment to the target CDRM. This system stores all data related to grid applications, including input, 
output, and checkpoint data. 
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Sidebar: Related Work 
Researchers have also compared several data storage strategies in different contexts. Hakim Weatherspoon and 

John Kubiatowicz compare erasure coding to replication in the context of peer-to-peer systems,1 as do Rodrigo 

Rodrigues and Barbara Liskov.2 In both cases, they evaluate the availability properties of erasure coding and 

replication using analytical formulations and collected data analysis. Our work focuses on the application 

execution overhead from coding and storing checkpoint data. 

Peter Sobe analyzes two different parity techniques for storing checkpoints in distributed systems.3 He 

compares the two models in an analytical study, but, unlike our work, this project doesn’t include any 

experiments. Also, he evaluates a different set of storage strategies than we evaluate here. 

James S. Plank, Kai Li, and Michael A. Puening propose the use of diskless checkpointing,4 which involves 

storing checkpoint data on system-volatile memory, removing the overhead of stable storage. Like us, they 

evaluate strategies for storing checkpoint data on the processing nodes and one or more backup nodes. But the 

focus of their work is on comparing diskless and disk-based checkpointing, and they performed their 

experiments using parity information for fault tolerance. 

Qutaibah Malluhi and William Johnston use an optimized version of Michael Rabin’s information dispersal 

algorithm5 and of 2D parity coding schemes, comparing their efficiency analytically.6 We compare a different set 

of coding techniques, perform experimental evaluations, and focus on nondedicated repositories. 

Finally, Jim Pruyne and Miron Livny study the use of multiple-checkpoint servers to store checkpoints from 

parallel applications, but they only compare single and dual dedicated checkpoint servers.7
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